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Abstract. We investigate the applicability of mode coupling theoly (MCT) to a 
system with a secon&order phase transition. We have calculated numerically the 
time autoconelation fundion of pseu&spin variables for a +‘-model with infinite 
range interactions. In contrast to some Lennard-Jones liquids we do not find any 
evidmce for an ergodic + non-ep&ic instability as predicted by Aksenov et nl 
using MCT. W e  argue that this instability, a t  least for the +‘-model (with short  or 
long-mge interactions), is a consequence of the approximations performed within 
the MCT. However, we stress that our mdts do not imply the same conclusion for 
supercooled liquids. The relaxationis non-Debye with a mean relaxation time r(T, N) 
(N is the number of atoms) exhibiting a rather unusual temperature dependence. In 
contrast to Arrhenius behaviour the relaxation becomes accelerated with decreasing 
temperature as long a5 T is sufficiently above the critical temperature T,. For finite 
N our results indicate a scaling law T ( T ,  N) = N m ( T )  for large N .  

1. Introduction 

There have been several attempts to account for the glass transition of structurally 
disordered materials like vitreous silica or metallic glasses. We do not discuss these 
theories here but the interested reader may consult, e.g., the review by Jackle [l]. 

Recently a quite different approach was suggested to explain the transition from 
the supercooled liquid to a glassy state [2]. These contributions are based on mode 
coupling theory (MCT), originally devised to describe the critical dynamics at a 
second-order phase transition [3]. Studying the normalized time correlation func- 
tion 4,(t) = (6p,(t)6p,(0))/Sq of the density fluctuations ( S p J t )  = p q ( l )  - (p,) with 
wavevector q,  S, is the static structure factor and (.) denotes the average over the 
canonical ensemble), these authors have shown that a dynamical iransition occurs at 
a temperature T,‘ll. At this temperature the system changes from ergodic to non- 
ergodic behaviour, i.e. below Tf the correlation functions 4,(t) no longer decay to 
zeroT. This type of transition has been interpreted as a ‘glass transition’ singularity. 

t Present address: Department of Chemistry, Stanford University, Stanford CA-94305, USA. 
11 Jn order to avoid confusion with the critical temperature T. WE use T:. For liquids T: is usuaUy 
denoted by T,. 
ll Strictly speaking this property in generd does n o t  imply non-ergodicity, but only the absence of 
mixing. The contrary. however, is true i.e. non-ergodicity implies the absence of mixing (see e.6. [4]). 

0953-S984/91/469195+’20$@3.50 @ 1991 IOP Publishing Ltd 9195 
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Note that T: should not be confused with the calorimetric glass transition tempera- 
ture Tg as the latter is not well defined because it depends on the cooling rate. For 
supercooled liquids MCT predicts Tg < T: < Tm, with T, the melting temperature. 
This sharp transition a t  7’: is found in an idealized MCT where hopping processes are 
neglected. Taking these into account, the transition becomes smeared out, but may 
still be observable [5]. Although there has been some criticism of the applicability of 
MCT to the dense liquid regime [6] (which has been partially invalidated [7,8]), recent 
experimental (e.g. [9]) and numerical (e.g. [IO]) work show agreement with some of 
the predictions of MCT. A review of this subject including a careful analysis of the 
experimental data is given by Gotze [8]. 

An idealized transition has also been found for a facil j tated kinetic king  model  
without interactions 1111, for spin glass and Potts glass models [I21 and for orienta- 
tional glasses 1131. However, detailed Monte Carlo studies for the facilitated king 
model have not confirmed the kinetic singularity [14]. 

The motivation for ihrs work is mainly to investigate the applicability of MCT 
to systems with a second-order phase transition and the existence of a dynamical 
transition or at least a signature of it. The +4-model belongs to this class of systems 
and has been extensively used to describe structural phase transitions. Its Hamiltonian 
is as follows 

W Kob and R Schilling 

Here m is the mass of the atoms, z, the scalar displacement of atom I at site RI of 
a three-dimensional lattice and C,., = C(IR, - R I / )  are the elastic constants. For the 
on-site interaction 15 we use a double well potential 

B + -24 A V O ( Z )  = --2 2 4 

with A and B positive. Restriction to A > z,C,, limits our investigation to the 
order-disorder regime, which will turn out to be the most interesting case for our 
purpose. The reader who is interested in more details on this hype of model, and 
more generally in structural phase transitions, is referred to the review by Bruce and 
Cowley [15]. MCT has also been applied to the model given by (1). Analagous to 
supercooled liquids an instability a t  T: > T, has been found [I61 for the correlation 
function 

wherc ut(i)  = z k ( t )  - (z,,). This result has been obtained in a single-site approima- 
tion for large enough coupling constants C,, and assuming anisotropy, i.e. C,, depends 
on the direction of R, - R I .  Although the treatment [16] is quantum mechanical, the 
conclusion holds for the classical system as well. 

Our recent numerical simulations of a one-dimensional +4-like model for which 
the double well potential (16) has been replaced by a piecewise parubolic (double- 
quadratic) one has not given any evidence of non-ergodic behaviour [17]. Since this 
finding may be an artifact due to the one-dimensionality, we will study here a three- 
dimensional +4-model with infinite-range interactions. This can be easily achieved by 
choosing in (1 a) 
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where N is the number of atoms. In this case every particle interacts with the other 
N - 1 particles with the same strength. This is often interpreted as a model with 
nearest neighbour interaction in infinite dimension (for N + CO). However, to allow 
comparison with the predictions of [16] we assume a three-dimensional lattice. Thus 
our choice of C,, is a special case of that treated in [16]. Of course, infinite-range 
interactions do not really occur in nature, but they are interesting from a theoretical 
point of view, e.g. mean field predictions become correct since factorization of higher 
order static correlation functions is exact in that case. MCT factorizes time-dependent 
higher order correlation functions. Therefore one could expect that the mode coupling 
approximation becomes better for infinite-range interactions. The investigation of this 
point is part of our motivation. In addition the choice of infinite-range interactions has 
the advantage that static quantities like the isothermal susceptibility, needed for the 
MCT, may be obtained analytically and the eqvation for the non-ergodicity parameter 
(ENPI 

L, = lim S(q,t)  
1-m 

can be solved exactly. Here 

(4) 

Non-ergodic behaviour is signalled by L, > 0 and vanishing L, indicates ergodic 
motion. It is this correlation function we have calculated from molecular dynamical 
simulations to test ergodicity. 

The organization of this article is as follows. The next section will briefly review 
MCT for the q54-model and will present the exact solution of the ENP yielding L (5"). 
The third section contains details and results of the numerical simulation. Finalyy we 
will discuss these numerical results with respect to MCT and summarize our findings. 

2. Mode coupling theory 

First, we briefly describe the mode coupling approach used by Aksenov el d [16]. This 
approach is based on the projection operator technique proposed by Tserkovnikov [18] 
which is equivalent to the Mori-Zwanzig formalism [19]. Starting from the Laplace 
transform of S(q, 1 ) :  

m 

dt B(ht)S(q, t)eiz' Imz 2 0 

where B ( t )  is the Aeaviside function, this technique generates a hierarchy of equations. 
Using the first two equations of this hierarchy, s^(q, z )  can be presented in the familiar 
form: 

P X ,  %?, 2) = 
z - [x,(r - pEzG(2)(q ,  z))]-l 

with p = 1kJ and the isothermal susceptibility 

(7) 

x, = @S(q, i = 0) = os,. (8) 
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The irreducible part k@)(q, 2 )  of the second-order relaxation kernel involves the an- 
harmonicity of the $‘-model: 

W Kob and R Schilling 

Using Tserkovnikov’s technique and the Fourier-Laplace transform of the following 
time correlation functions: 

we find 

with 

W Y q , z )  = Z(q,z) - s (q , z ) l s^ (q ,Z)[ - ’s ( -9 , z )  

W ( q ,  2 )  = F(q, 2) + Z(q,z)[s^(q, z ) l - ’E ( -q ,z )  

W ( 9 , Z )  = q q ,  2) + ii(q,z)[i?(q, 2)]-1E(-q, 2 )  

(1lb) 

where the symmetry of the functions (10) under time reversal and reflection has been 
used. On the next level of the hierarchy an equation similar to (7) can be derived 
for $’)(q,  2). In general this procedure does not stop and leads to an infinite set of 
coupled equations. An exact solution is therefore impossible, and approximations are 
unavoidable. The simplest but crudest one is as follows [16] 

Mi:)( t )  2 6[Skl(t)]3. (12) 

The nature of this approximation is best elucidated by adopting the Mori-Zwanzig for- 
malism. If P denotes the projection onto the variables { a k } ,  { p k }  and L: the Liouvillian 
corresponding to the Hamiltonian H ,  @f)(z) can be represented as follows [19]: 

@)(z )  = ( f k l b  - QLQI-’lfi) (134 

with the fluctuating force 

and 
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In the following we always m u m e  T > T, which implies (zk) = 0 or uk = zk for all 
k. Using this and the equation of motion we obtain 

and with (136) 

@f)(r) = (Qu:I[x - QLQl-'lQu?) (154 

~ j : ) ( t )  = (~u:(o)e-'QLe'~u:(0)) (15b) 

which is the Laplace transform of 

i.e. the time dependence of the irreduci6le part of the second-order kernel is determined 
by 

LQ = QLQ (16) 

the Liouvillian in the space of dynamical variables orthogonal to {U,} and {pk}. Con- 
sequently, approximation (12) consists of two steps, first the replacement 

L Q - 4  (17) 

and second the factorization 

(&u~(O)eLiLr W O ) )  -t 
Both steps most be taken together in order to avoid unphysical results [20]. The ENP 
derived by Aksenov el a1 [I61 for the b4-model and the ENP for supercooled liquids 
are based on these approximationst. Substitution of (12) into (7) and taking 

- 
L,  = t-m lim S(p, t) = S-0 lim zS(q, z) (190) 

into account (Lkl  is the Fourier transform of L,) we arrive at the ENP for the b4-model 

with 

I, = PL,/xq A, = 6 B Z x ~ / p 2 .  

The mathematical structure of these equations, first derived in [16], is very similar to 
the ENP for liquids [SI. Because of the q-dependence they can usually only be solved 

t See also section 3.4 of [SI 
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numerically. However, for the model with infinite-range interactions the ENP can be 
solved exactly in the limit N - CO. In this case x, takes only two values: 

W Kob and R Schilling 

q = o  

The same is true for L,, i.e. 

q = o  

Then, in leading order in N, (204 reduces to 

-- io - A& 
1 - lo 

1~ - - All? 
1 - 1,  

1 

where A o ,  A, are defined analogous to xo, x1 and Lo,  L, 
Two conclusions can easily be drawn from (23 ) :  

(i) for a harmonic on-site potential, i.e. B = 0, (23)  possess only the trivial solution 
1, = 0 (of course this is true for (20) too); and 

(ii) I ,  # 0 implies lo # 0 and vice versa. 

Therefore i t  is sufficient to discuss (236).  It is easy to show that for 

A, > A, = 2714 (24) 

there exist two positive solutions besides the trivial one. From these two only the 
larger one is physical (see [8]). At A, a discontinuous transition from L, = 0 to 
L, > 0 takes place, called a B-type transition [SI. Equations (24) and (20b)  yield an 
equation for Ti: 

Using the equations for T, and Ti, which will be derived in the appendix, it follows 
that 

T, < for C / f i  < ( 8 / 9 ) ' I 4 m  

and T, > T: otherwise. 
But notice that (20 )  and therefore (23)  too, were derived under the assumption 

that (zL) = 0 which only holds for T > T,. To discuss the possibility TL < T, one has 
to take (zL) # 0 into account. 

For IA  - A,/ small, the reduced non-ergodicity parameter 1, behaves as follows: 

which describes a discontinuous transition with the same square root behaviour as 
that found for liquids 181. 
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3. Numerical procedure and results 

In this section we present some details of our numerical simulations performed to 
investigate the existence of a kinetic singularity at T:. Instead of calculating &(t) it 
is numerically more convenient to consider the correlation function: 

4) = sgn(zk(t)) (29) 

(cf [15] and especially [17]). An arrest of the fluctuations of uk( t )  at 'Ti will imply the 
freezing of the fluctuations of ul(t), leading to a long time tail for Gkl(t), i.e. it is 

K,  = )& G,(t)  > 0 (30) 

for T < Tg provided the prediction of [16] is correct. Since (30) holds for ail q it is 
sufficient to investigate the autocorrelation function Gkk(t) in order to prove or dis- 
prove the existence of a non-ergodic instability. Therefore we have solved numerically 
the equations of motion 

for the infinite-range model and different N .  yk,f' and p are rescaled variables: 

c 
A - C  
- 

Note that A - C is positive, due to the restriction to the order-disorder regime and 
that y, is the rescaled displacement from a three-dimensional lattice point Rk. 

In the molecular dynamics simulations we have integrated (31) with the velocity 
form of the Verlet algorithm [21] for different system sizes N between 100 and 3000. 
We usually employed a step size h = 0.02 tu (rescaled time units) except for several 
runs with h = 0.01 tu  to test the dependence of our results on h. We found no 
dependence on h. This time step leads to relative fluctuations in the total energy 
of order lo-' over the whole run and a relative drift in temperature of less than 
1%. To set up the initial configurations of the system in phase space we chose N 
Gaussian distributed random numbers with mean values between 0.8 and 1.0 and 
width between 0.5 and 1.0. Changing the sign of about halfof these numbers randomly 
(to occupy the left and right well of V,(t) with equal probability) they were used as 
initial displacements y, (0). Similarly, the initial velocities yk(0) were generated from 
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N Gaussian distributed random numbers with mean zero and width between 0.6 and 
1.0. 

We equilibrated the system by rescaling the velocities of all the particles at every 
time step [22]. This was done for at least 10% of the total run length but for large 
system and low temperatures up to 30% of the total time. Longer equilibration 
times for larger systems were required because the Euctuations of the right-hand side 
(31) decrease with increasing N (and thus the effective coupling between the particles 
decreases). We found to a good approximation that the RMS of the right-hand side of 
(31) behaves like N-’12 (see figure 1) independent of temperature for the investigated 
range T > T,. 

W Kob and R Schilling 

lo-’ ‘ 

- T=2.0 
- _  T=1.5 
- - -  T=1.0 

T=0.3 

10-3 1 
loo 10‘ l o 2  lo3 104 

N 
Figure 1. Root-mean-square of p 
tempera1ures. The straight Line corresponds to N - ‘ l 2 .  

To reduce the scattering of the data for Gkk( t )  we have calculated 

gn ( : ) I N  85 a funclion of system size for diRvent 

which is shown in figure 2 for different N and p = 0.08. For some temperatures the 
relaxation behaviour is given over 4 to almost 6 orders of magnitude, thus ranging 
from microscopic to mesoscopic time scales. Since the time averaging on the two time 
scales had to be done separately, the two regimes do not match perfectly. But the 
discrepancy, which is a measure of the accuracy of our numerical simulations, decreases 
with increasing N .  Qualitatively similar results to those shown in figure 2 were found 
also for p = 0.215. 

On the microscopic time scale, ovet tens of Einstein periods (equal to 2n tu), 
oscillations occur which become damped afterwards and lead to a plateau on a fog- 
arithmic scale. Surprisingly the appearance of such a plateau has also been found for 
the density correlation function of two- and three-component liquids [IO]. In our case 
the length of the plateau increases with N,  as demonstrated in figure 3. 
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N=100 
. .~ 
1.0 

Gkk 0.8 
0.6 
0.4 
0.2 
0.0 
-0.2 
-0.4 1 v N=300 t 

G 

0.4 

0.2 

N=3000 
-0.2 

t 
Figure 2. Autocorrelation function G*r(t)  for different temperatures for f i  = 0.08 
and different system sizes. (a)  N = 100 and temperature from top t6 bottom: 0.11, 
0.2, 0.3, 0.4, 0.6, 1.5, 2.0. (6) N = 3W and T = 0.11, 0.15. 0.2, 0.3, 0.4, 0.5, 0.7, 
1.0, 1.5, 2.0. ( c )  N = 1000 and T = 0.11, 0.15, 0.2, 0.3, 0.4, 0.6, 1.0, 1.5, 2.0. ( d )  
N=3000andT=O.11,1.15,0.2,0.3,0.5,1.0. 
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-0.2 

t 

Fignce 3. Ctr ( t )  for different system sizes and temperat-. p = 0.08: full CUM, 
N = 3o00, brolvn curve. N = 1wO; dotted curye, N = 300. Temperatures from top 
to bottom: 0.11, 0.3, 1.0, 

We have analysed the relaxation functions cLL( t )  with respect to the temperature 
dependence of both the mean relaxation time r(T) and the stretching of relaxation 
times quantified by the Kohlrausch-exponent p(T) and finally we explored the e x i ~  
tence of a dynamical transition. 

3.1. Relazafion time and siretching 
To compute the mean relaxation time and determine a measure for the stretching, we 
fit ckx(t) with a Kohlrausch-William-Watts (KWW) law: 

eCk(t) = A exp[-(t/r)P]. (34) 

Although the KWW law fits our data on the mesoscopic time scale quite well, our 
results are not necessarily a proof for a KWW law, since the time range scaled with 
r(T) is rather short. Therefore the KWW-exponent p(T) should only be considered as 
a measure of stretching. an Arrheuius plot for r(T) is shown in figure 4 for different 
N and two different p values. r(T) reveals a rather unusual behaviour. Whereas an 
Arrhenius law may exist for higher temperatures, the relaxation behaviour relative to 
this law gets accelerated for lower temperatures (but still sufficiently above the critical 
temperature T,) in contrast to all systems (known to us) undergoing a liquid-glass 
transition (cf a plot proposed by Angel1 for the viscosity 1) as function of T,/T [23] 
and assume 7 - q) .  Approaching T, the mean relaxation time will increase very 
rapidly leading to a divergency at T, (critical slowing down). This regime has not 
been explored by us. We stress that the result for r (T) looks quite similar to that 
in figure 4 if one uses the area under the-relaxation curve as a relaxation time. This 
demonstrates that the assumption that Gkk(t) follows a KWW law is not critical for 
the conclusions stated in this paragraph. Note also that r(T) does not reveal any 
singularity at T' c- 1.05 (for the calculation of Tf see the appendix) as predicted by 
the MCT. 

The corresponding KWW-exponent p is presented in figure 5. Although the data for 
different initial configurations scatter, the T dependence of p is reasonably well defined. 



Ergodicity of a sysiem with second-order phase tmnsition: 9205 

13 

x N-300 
o N-IO0 a p X  

7 t 
0 2 4 6 a io 

T -' 

m 0 N-1000 
+ x N-300 
1 D N=100 

4- 
0 1 2 3 4 5 6  

T-' 
Figure 4. Arrheniusplot for the relaxation time 7 for different system sizes. (a) 
fi = 0.08, 1/T, 2 13.8; (6) p = 0.215, l /T ,  2 5.58. The different symbols for the 
same values of N in (a )  denote different initial conditions. 

There is a minimum between 0.5 and 1.0. For T approaching zero or infinity f l  seems 
to converge to unity. Since 1 - /3 can be considered as a measure of cooperativity one 
may thus conclude that the cooperative motion of the particles is maximum between 
T = 0.5 and T = 1.0. 

3.2. Non-ergodicity pammeter 

Analogous to the liquid-glass transition, we do not expect an ideal dynamical transi- 
tion for the +4-model due to the existence of hopping transitions a t  least for finite N 
(see also the first paragraph of section 4.2). Therefore we anticipate that in this case 
Kq 5 0. Nevertheless it might be possible to deduce a non-ergodicity parameter from 
the relaxation behaviour compatible with the MCT results, (25). This may be feasible 
due to a quasi non-ergodic behaviour leading to a plateau in the relaxation function. 
Therefore, similar to the analysis of some of the experimental data [9], we fit our data 
with a KWW law and use as a (quasi)-non-ergodicity parameter Qo the amplitude 
A(T). A(T) is given roughly by the value of the plateau appearing in GICL(t) and is 
shown in figure 6. A(T) does not exhibit any evidence for a dynamical transition or 
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0.9 
0.8 
0.7 
0.6 

0 "  

0.3 4 
T 2'o 

0.0 0.5 1.0 1.5 

0.9 

0.8 .C 

P 

O D  
0.4 !- 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
T 

Figure 5. xww-exponent 0 85 a function of temperalure for different system sizes. 
(a )  U = 0.08; ( b )  p = 0.215. The diff-t symbols for the s m e  values of N in ( b )  
denote different initid conditions. 

cross-over at Tf = 1.05. 
Remember that for T > T, and N large the fluctuations of the right-hand side (31) 

are of order N - ' / *  and therefore can be approximated by zero, at least for times t 
smaller than a certain time t o ( N ) .  Therefore let us consider N = 00 for a moment. In 
this case the interactions may be neglected completely. Hence the energy of each atom 
is conserwed implying non-ergodicity. This has been already mentioned by Onodera 
and recently by Flach 1241. In this case the non-ergodicity parameter Qo(T) can easily 
be determined. Qo(T) is just the relative mean number of particles with energy smaller 
than the single-particle barrier, because for these particles ub(t)uk(0) = 1 for all times. 
Using the resealed variables (32) and the corresponding one-particle Hamiltonian: 

(354 
- 
Ho(P,Y) = +P2 + VdY) 

with 

(356) 
- 
V,(y) = -+y* + i Y 4  
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1.0 
(a) 

0.8 I A 

a N-3000 
D N-IO00 
x N-300 
o N-100 

0.4 

0.2 
Q 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 

T 

A 0.8 - 
0 N-1000 

* x N-300 - 
~1 o N=100 

0.2 - 

L. 0.0 1. c B 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
T 

Figure 6. Amplitude A ( T )  of the KWW fit a5 a function of temperature for different 
system shes. For the full m v e  see text. (a) p = 0.08; ( b )  p = 0.215. 

it follows 

with 

The integrals appearing in (36) have been evaluated numerically leading to the result 
for Q,(T) presented by the full curve in figure 6. Note that Qo(T) varies smoothly 
with T ,  without any distinguished temperature. This figure demonstrates reasonable 
agreement between the exact result for Qo in the case C = 0 and the numerical one 
for the finite and interacting system. We will return to this point in the next section. 

4. Discussion of the results 

This section will mainly discuss the numerical results for the autocorrelation function ckk(t) in the spirit of MCT. First we consider the T dependence of the mean relaxation 
time 7 and the KWW-exponent p .  
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4.1. Relazafion lime and sfnfching 

The concave curvature for r(T) shown in figure 4 signifies a decrease in the relevant 
barriers with decreasing temperature. That this really happens for the infinite-range 
model has been proved recently by Ovchinnikov and Onishyk (251. These authors show 
the existence of a critical value pc = b at which the general appearance of the energy 
landscape in configuration space, e.g. the barrier heights, changes qualitatively. In 
particular they argue that the relaxation is accelerated or decelerated for p smaller 
or larger than pc, respectively. This demonstrates that the relaxation behaviour is 
intimately related to the qualitative properties of the energy landscape and it is an 
interesting and probably difficult chaUenge to have a more general understanding of 
this relationship from a microscopic point of view [23]. 

W Kob and R Schilling 

In r 

NdOOO 
N-1000 

I N-300 
0 N-100 

0 2 4 6 a io ’ 0  2 4 6 8 16 

In r 
9.5 

6.5 I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1 

T -l 
Figure 7.  Relaxation time 7 scaled with Ne. (a )  fi = 0.08, a = 0.97; ( b )  p = 
0.215,o = 0.95. 

Another interesting feature of r(T) is its N dependence. Since the 7 against T 
curves for different N in figure 4 seem to be just shifted, it is tempting to check the 
validity of a scaling law for N >> 1: 
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Using the results given in figure 4 we determined LI by maximizing ( 1  -rS)' where rs is 
the Spearman rank-order correlation coefficient (see, for example, [ZS]). The results of 
this non-parametric fit are presented in figure 7. Apart from some scattering at higher 
temperatures all our data seem to fall onto one curvet. From this scaling we obtain: 
(I = 0.97zt 0.03 for p = 0.08 and (I = 0.95% 0.03 for p = 0.215. Probably the correct 
value is CY = 1, provided the scaling ansatz is correct. Of course, the N dependence 
of 7 is due to  the infinite range of the interactions. But the T dependence of T~ may 
resemble that for a system with short-range interactions, e.g. critical slowing down 
should occur: 7o -t 03 for T -+ T,. 

The main conclusion following from figure 5 is the T dependence of the KWW- 
exponent P. This is in contrast to the time-temperature superposition principle valid 
for supercooled liquids [SI. In particular the stretching is maximum for T between 0.5 
and 1. In this range T is of the order of E, = 0.25, the barrier height of v0 when 
expressed in scaled variables. 

4.2. Non-ergodicity-parameter 

The numerical data shown in figure 6 for the amplitude A(T) of the KWW law do 
not reveal any sign of an underlying singularity. Although simulation results do not 
constitute a rigorous proof, we think that the smoothness of A(T) at Ti rules out 
any signature of a dynamical transition. The agreement between these data and 
the analytical result for the non-ergodicity parameter Qo, when the interactions are 
neglected, allows the following physical interpretation: for finite N ,  those particles 
with energy smaller than the single-particle barrier stay in the well where they have 
been at t = 0 and oscillate around their local minimum. This will be true fort < t o ( N )  
and may be compared with the cage effect for supercooled liquids [SI. For times 
comparable with or larger than t , (N)  the interaction will come into play, leading to 
transitions (hopping) between both local minima and restoring ergodicity. Thus 1 / N  
may be compared with the parameter 6 describing the hopping processes in liquids 
181. This interpretation can be used for short-range interactions as well, but with 6 
being finite and independent on N .  For N = 03 ergodicity is really broken, however, 
for all temperatures. This is in disagreement with the result by Aksenov e t  al. We 
now investigate this discrepancy. 

Equation (11) allows us to express M(') in terms of E , F , N ,  R,S and %. These 
quantities are not independent. Using the equations of motion (m = 1): 

- ^ ^ ^ ^ ^  

u k  =Pk 
pb =Dk,u, - Buk 3 

with 

we find for the time-correlation functions (10) the equations of motion: 

S k l  = Rkl 

t The point N = 3000 at 1/T 'I 5.0 in figure 7 ( 0 )  has a large e m r  bar and does not contradict this 
statement. 
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Note that we assume (zk) = 0 in (38a), since only T > T, is considered in this paper. 
Furthermore summation over repeated indices is understood. Taking the Fourier  
Laplace transform of these equations and using (11) we find 

zZ(2)(q, .) -+ zZ(q, .) - D J B ) ~ L ,  + (PB)-~L,/[s,(s, - L,)] (40)  

for z - 0. Substituting this into (7) it follows that 

”(q,.)  - ( D , / B I 2 L ,  (41 )  

for z 0. Expression ( 4 1 )  can be derived without using any projection techniques 
since ( 3 9 )  allow us to deduce an equation only involving $;)(f),$) 3 s k f ( f ) , s k f ( t )  
and M k , ( t ) .  The Fourier-Laplace transform of this equation and the limit z - 0 
immediately yields (41 ) .  Using the Gaussian approximation (for T > T,) 

E 6 ( S k l ( t ) ) 3  + 9 ( u : ) 2 s k i ( t )  ( 42 )  

equation (41) yields for the scaled variables (32 )  and the infiniterange model 

( 1  - S(y:)’)Lb = SLY ( 4 3 4  

( 1  - 9(d)*)L’, = 6L;” (43b) 

where Lb = (A - C)L,/B, the rescaled non-ergodicity parameter. Similar to (23 )  we 
obtain a non-trivial solution 

L; = Jm. (44)  

(yz)(T) can be evaluated numerically as a function of T ,  The function has a minimum 
with a value larger than 0.830. Therefore the square root is always imaginary, i.e. 
thcre is no non-trivial solution and therefore no instability. Although the quality of 
approximation (42 )  is unclear (as is the case for approximation (12) ) ,  in O U F  model 
it eliminates the instability and is therefore consistent with our numerical finding. 
However, the Gaussian approximation has another drawback since it implies L, = 0 
which is unphysical for the infiniterange model. This is not surprising due to the 
double-well character of the on-site potential playing a role even above T,. This 
demonstrates how crucial the approximations can be. 
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5. Summary 

First of all let us repeat the results obtained by Aksenov e t  al [16]. For a three- 
dimensional +4-model an equation for the non-ergodicity parameter L, (which is (20) 
in our paper) was derived within the MCT for an arbitmry range of interactions. This 
should hold for infinite-range interactions as weU. However, our intensive numerical 
simulations do not yield any evidence for a non-ergodic instability, not even for a 
smeared out version. This is supported by the smooth temperature dependence of 
the height of the plateau (found for the autocorrelation function for the infinite-range 
model) which has been interpreted as a non-ergodicity parameter for the finite system. 
This interpretation has been strengthened by the reasonable agreement between this 
height and the exact non-ergodicity parameter of the non-interacting system. The 
latter system is obviously non-ergodic, due to the double-well character of the on- 
site potential breaking the ‘left-right’ symmetry for energies smaller than the single- 
particle barrier. Although this is no longer true in the displacive regime, ergodicity 
will nevertheless also be broken if the interactions vanish. 

Despite these results for the +4-model, our conclusions cannot be transferred to 
the MCT for liquids. We stress that the approximations made for liquids using the 
M C T  may be much less crucial which seems to be confirmed by the agreement between 
numerical and experimental results with some of the predictions of the MCT for super- 
cooled liquids. Nevertheless it is important to learn more for what kind of systems the 
approximations are reasonable. This knowledge is necessary in order to understand 
why even several glass forming systems, e.g. vitreous silica, are not in accordance 
with McT since, e.g., its viscosity is purely Arrhenius-like above Ts. Whether this re- 
lates only to the neglect of hopping processes and not partially to the mode coupling 
approximation remains unclear. 

We also mention that the accelerated nature found for the temperature dependence 
of the mean relaxation time T is rather unusual. It proves that the relevant barriers 
decrease with decreasing temperature (energy), in agreement with recent results by 
Ovchinnikov el a1 for p < 5 [25]. It would be interesting to have more insight into the 
relationship between relaxation behaviour of disordered structures and their energy 
landscape in configuration space as suggested by Angel1 [23]. Finally, our numerical 
results exhibit a maximum stretching of relaxation times for a temperature rauge of 
the order of E,,, the barrier of the on-site potential. For temperatures converging to 
zero or infinity they seem to indicate pure Debye relaxation. 
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Appendix 

In the following we sketch how to calculate the critical temperature T,, the isothermal 
susceptibility xkr and the temperature T: for the dynamical glass transition for the 
model given by (1) in the case C,, = C / N .  

W Kob and R Schilling 

Consider the Hamiltonian 

where H is given by (1) and hi denotes the conjugate field with respect to coordinate 
zI. The configuration part of the partition function can be written as 

I 

I 

where h = { h l , .  . . , h,,} and 

A - C  B 
4 

Using an integral representation of the &function Z,(h) can he written as 

Z , ( h )  = 1 /w ds /- dy exp{ g y 2  + isy 

2 2 + - z .  VL(Z) = -- 2 

2a ..- - w  

(A4) 
W 

+ c l . /  dzfexp[-PVl(zf) - iszl + P h p J  
I -- 

For N -+ 00 the s-integration in (A4) can be performed by exploiting the method of 
steepest descent. This and the relation 

645) 

yields for the susceptibility (up to order 0(1/N))  

(A64 PA2 
X k k  = A, 

PA2 1 
X k i  = NA, (AJCPA,)  - 1 k f l  

with 
W 

Ai = 1- dzexp[-PV,(z)]z’. 



Ergodicily of a system with second-order phase lmnsilion: 9213 

The Fourier transform x, of x k r  is given by 

PA, - 
X,#O = 7 - - x1 

0 

Equation (A7a) shows that the critical temperature T, can be determined from the 
condition 

From (206), (24) and (A7b) we arrive at the equation for T,' 

Choosing scaled variables (32) one immediately finds that (A9) does not depend on 
any of the parameters A ,  B and C. The solution of (AS) (in rescaled units) is givcu 
by T: = 1.05212.. .,independent on p.  
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